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Supplementary Fig.1. Experimental conditions and sensors collected to select the best estimation 

method. (A) Eleven conditions and quiet standing were collected including a variety of 

walking, running, and hopping motions. (B) A variety of wearable sensor data and 

tethered Respirometry were collected. 
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Supplementary Fig.2. Visual illustration of the Data-Driven Model. The Data-Driven Model 

processes input data by segmenting stride, filtering, discretizing to a fixed input size, and 

flattening the processed inputs to a vector. An estimate of energy expenditure is computed 

by passing the processed inputs to a trained linear regression model. 
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Supplementary Fig.3. Comparison of methods estimating steady-state energy expenditure. (A) 

The Data-Driven Model was selected as the best method because it had the lowest error of 

the wearable methods. Fast-Estimated Respirometry relies on the lab-based respirometry 

equipment which provides ground truth energy expenditure measurements. The Data-

Driven Model relied on all wearable sensor inputs. Accuracy was evaluated using a cross-

validation approach that held out one subject (n = 13) and one condition from the training 

data, fit the method with the training data if appropriate, and estimated energy expenditure 

for the withheld subject and condition. We did this for all permutations of subjects and 

conditions and averaged the error. The boxes extend from the lower to upper quartile 

values of the data, with a line at the median and a dot at the mean. The whiskers extend to 

the last data point within 2.5 times the interquartile range. Fliers were not plotted due to 

the wide range in errors. (B) Energy expenditure errors from the start of steady-state 

conditions were compared to understand how quickly each method converged to a steady-

state estimate. The Data-Driven Model converged the fastest and had the lowest error 

initially. Fast-Estimated Respirometry had the lowest error after 74 seconds.  
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Supplementary Fig.4. Extending offline estimation to time-varying activity. The we compared 

methods of estimating energy expenditure with an experiment (n = 4) where subjects 

completed time-varying conditions following periodic changes in treadmill speed which 

were (A) varied sinusoidally or (B) with discrete steps between walking and running at 

1.25 and 2.75 m/s. The Activity Monitor and Musculoskeletal model were not evaluated 

during time-varying conditions because of slow estimation rate and significant 

computation time (Supplementary Table 1), respectively. Data from a representative 

subject illustrates the estimates and ground truth Interpolated Respirometry. (C, D) The 

wearable data-driven estimates and Interpolated Respirometry were averaged over the 

cyclic periods to find the mean and standard deviation across subjects tested with this 

protocol. The error band represents one standard deviation. (E, F) The absolute error was 

computed at each time step and then averaged. The boxes extend from the lower to upper 

quartile values of the data, with a line at the median and a dot at the mean. The whiskers 

extend to the last data point within 2.5 times the interquartile range. Fliers were not plotted 

due to the wide range in errors. 
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Supplementary Fig.5. The Data-Driven Model error as a function of training data. The error 

decreased with additional subjects included in the training data. The reduction in error 

with each model decreases, suggesting a limit to the error.   
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Supplementary Fig.6. Estimating steady-state energy expenditure with limited training data. The 

minimal dataset consisted of one condition per activity: walking at 1.25 m/s, running at 

2.75 m/s, sideways walking at 1 m/s, backwards walking at 1 m/s, and self-selected 

hopping in place. The minimal dataset tested the methods on a new subject (n = 13) and 

new conditions using cross-validation. The Data-Driven Model had large error during 

running, resulting in worse overall error than the Musculoskeletal Model. The best of both 

models represents combining the data-driven and musculoskeletal models which offered 

best performance. The boxes extend from the lower to upper quartile values of the data, 

with a line at the median and a dot at the mean. The whiskers extend to the last data point 

within 2.5 times the interquartile range. Fliers were not plotted due to the wide range in 

errors.   
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Supplementary Fig.7. Steady-state errors for each activity and method. The Wearable System 

had consistently low errors. The other methods accuracy varied by activity. The Heart 

Rate Model and Activity-Specific Smartwatch had the largest errors during walking and 

biking. The Smartwatch had drastically increased errors the stair climbing and biking 

activities. The number of subjects that completed each respective condition were: 24, 24, 

13, 11, 22, 14, 24, and 14. The boxes extend from the lower to upper quartile values of the 

data, with a line at the median and a dot at the mean. The whiskers extend to the last data 

point within 2.5 times the interquartile range. Fliers were not plotted due to the wide range 

in errors. 
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Vertical Force (1) Kinematics (3) EMG (7) IMU (4) Relative Error (%) 

X X X X 10.5 

X    19.1 

 X   36.3 

  X  46.8 

   X 13.7 

X X   24.3 

X  X  17.5 

X   X 11.5 

 X X  28.6 

  X X 12.4 

 X  X 12.4 

X X  X 10.6 

X  X X 10.5 

X X X  20.2 

 X X X 11.5 

 

Supplementary Table 1. The Data-Driven Model results for permutations of input sensor 

classes. Sensor classes include: vertical ground reaction force (Vertical Force), lower-limb 

joint kinematics (Kinematics), electromyography (EMG), and inertial measurement units 

(IMU). The number next to the sensor classes indicates the number of sensors used for 

that class. The individual class with the lowest error was IMU and in general the IMUs 

paired with other sensors had lower error than the other sensors alone. The error was 

computed using the cross-validation approach over all permutations of subjects and 

conditions.  
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Location of IMU Placements  

Hip Thigh Shank Foot Relative Error (%) 

X X X X 13.7 

X    16.8 

 X   16.7 

  X  17.1 

   X 17.4 

X X   14.7 

X  X  16.0 

X   X 17.9 

 X X  13.7 

  X X 15.7 

 X  X 14.9 

X X  X 14.6 

X  X X 14.5 

X X X  14.8 

 X X X 15.4 

 

Supplementary Table 2. The Data-Driven Model results for permutations of inertial 

measurement units (IMUs) placed at different locations on one leg. The IMU placements 

included the hip, thigh, shank, and foot. The permutation with the lowest error was with 

one IMU worn on the thigh and shank. The error was computed using the cross-validation 

approach over all permutations of subjects and conditions.  
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Computation steps Time (s) 

1. Pre-processing data 0.005 

2. Linear regression model estimation 0.004 

The Wearable System total 0.009 

1. Pre-processing data 0.004 

2. OpenSense inverse kinematics 2.720 

3. Linear regression model estimation 0.002 

4. OpenSim forward dynamics simulation 76.290 

The Musculoskeletal Model total 79.016 

Supplementary Table 3. Computation time for the Wearable System and the Musculoskeletal 

Model. Each estimate was computed by processing an individual stride of data. The 

Wearable System estimate was computed with a single core of a Raspberry Pi 3b+ and the 

Musculoskeletal Model was computed using a single core of an i7 laptop processor. The 

time required to train the linear regression model and scale the Musculoskeletal Model 

occurred offline and was not included in the total. The Wearable System estimation 

required less than 0.01 seconds, feasible for real-time use. 
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Question text (1 = Strongly Agree, 2 = Somewhat Agree, 3 = Neither Agree Nor 

Disagree, 4 = Somewhat Disagree, 5 = Strongly Disagree) 

Mean ± Std 

I think that I would like to use this system frequently. 2.8 ± 1.1 

I found the system unnecessarily complex. 4.4 ± 0.8 

I thought the system was easy to use. 1.6 ± 0.6 

I think that I would need the support of a technical person to be able to use this 

system. 

4.5 ± 0.5 

I found the various functions in this system were well integrated. 1.6 ± 0.8 

I thought there was too much inconsistency in this system. 4.4 ± 0.8 

I would imagine that most people would learn to use this system very quickly. 1.6 ± 0.8 

I found the system very cumbersome to use. 3.8 ± 1.1 

I felt very confident using the system. 1.8 ± 0.9 

I needed to learn a lot of things before I could get going with this system. 4.6 ± 0.6 

Total usability score (out of 100) 80.9 ± 7.2 

Supplementary Table 4. System usability survey results. This questionnaire is the standard 

System Usability Scale (40). It is a Likert scale meant to evaluate the usability of a 

system. 21 participants evaluated the Wearable System with this survey. The Wearable 

System had a relatively high usability score of 80.9 averaged across participants. 

 

Prompt: Overall reactions to the Wearable System  Mean ± Std 

0 (heavy) to 9 (light) 7.3 ± 1.3 

0 (obtrusive) to 9 (unobtrusive) 5.9 ± 2.3 

0 (complex) to 9 (simple) 7.0 ± 1.9 

0 (painful) to 9 (comfortable) 7.3 ± 1.1 

0 (bulky) to 9 (compact) 6.6 ± 2.0 

Supplementary Table 5. System comfort survey results. This questionnaire was based on the 

Questionnaire for User Interaction Satisfaction survey (42). 21 participants were asked to 

evaluate the Wearable System on a scale of 0 to 9 for different comfort related metrics. 

The Wearable System had high values, indicating it was comfortable to wear and use. 

 


